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I. INTRODUCTION 

This thesis, is concerned with extending the concept of "distortion

less" filtering to certain discrete-data situations, in particular, to the 

situations to which the usual Kalman filter theory is applicable. A brief 

derivation of Kalman's recursive equations is given in Section III, and 

then in Section IV a distortionless constraint is applied. However, 

before Sections III and IV are presented, a very brief review of the areas 

of classical and Wiener filter theory and an extensive review of distor

tionless filtering are given in this section and Section II, respectively. 

This background material is mainly related to continuous-data situations. 

To be specific, consider the simple filtering situation shown in 

Figure 1. The filter input is a signal x(t) plus noise n(t), and the 

object of the filter is to operate on this input in such a way that the 

output x(t) is a good approximation to the true signal value x(t). Al

though nonlinear filters are sometimes used, only linear filters are con

sidered here; and so it is appropriate to represent the filter by a trans

fer function Y(s). 

Now in classical filter theory, it ia aaaumed that the deAired fre

quency response of the filter is knovra; i.e., Y(s) is given. The purpose 

of the theory is to help the filter designer choose an appropriate elec

trical network configuration to yield the given frequency response. For 

x(t) + n(t) 
Y(s) 

&(t) \ 
/I 

Y(s) / 

Figure 1. A simple continuous-data filtering situation 
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example, if x(t) is a low-freoLuency signal and n(t) is mainly high-

frequency noise, then the desired frequency response is obviously that of 

a low-pass filter. The classical theory gives various ways to implement 

the filter, depending on such things as whether x(t) is a voltage or a 

current, whether capacitors are more readily available than inductors, and 

so forth. 

It can be seen that if the frequency spectra of the signal and the 

noise are known and do not overlap, then the filter can be chosen, at 

least theoretically, so that its output is exactly x(t). In other words, 

for this case it is relatively easy to choose Y(s) so that the filter 

blocks all the noise without in any way distorting the signal. However, 

in the case where the signal and noise are both "noise-like" in character 

and there is an overlap in their frequency spectra, it is no longer 

obvious what filter frequency response would be best. In fact, it can be 

seen that in this case even an ideal filter will corrupt or distort the 

signal somewhat in process of attenuating the noisej and so in general a 

compromise must be made which pemits some signal distortion in order to 

attenuate more of the noise. Choosing the frequency response that gives 

the best compromise then becomes the first step of the filter-design 

problem, and it is this part of the problem to which Wiener filter theory 

is applicable. After the desired transfer function is obtained, however, 

the actual implementation is still frequently done by using classical 

filter theory. 

In Wiener filter theory, an appropriate problem statement for a 

situation like that shown in Figure 1 is as follows; given the spectral 

density functions of x(t) and n(t), determine the "optimum" transfer 
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function Y(s). The optimization criterion is minimization of the mean-

square error, where the error e(t) is defined as the difference between 

the output and the true signal; i.e., 

e(t) = x(t) - x(t) (l.l) 

Discussion of the restrictions placed on Y(s) and on the situations to 

which Wiener's work may be applied can be found, for example, in Bendat 

(2) or Brown and Nilsson (5). 

The point of the previous discussion that is most important to this 

thesis is that using Wiener's theory in a situation like that of Figure 1 

usually yields a transfer function that distorts the signal. Hence, even 

if the input noise happens to be zero for all time, the output is not 

exactly equal to the signal, (it should be noted that the word "happens" 

is used here, and in similar statements later, to imply that the filter is 

designed in anticipation of some nonzero noise.) However, another situa

tion that sometimes occurs is that the signal is available from two inde

pendent, noisy sources. In this case, even when nothing is known about 

the signal, it is possible to attenuate the noise (the extent of attenua

tion depending on the particular situation) and yet satisfy a distortion

less constraint such that the filter output is exactly equal to the signal 

if both input noises happen to be zero. A rather thorough review of 

distortionless filtering is given in the next section, and so no more will 

be said about it at this time. 

It will be seen in Section III that Kalman's theory involves a set of 

recursive matrix equations, implementation of which usually requires a 

digital computer. Thus a Kail man filter is quite different from the elec

trical network that results from the use of classical filter theory. The 
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reason that the term filter is frequently given to Kalman's technique is 

that it may be considered to be a discrete analogue of a multi-dimensional 

Wiener filter. The term "estimator" is often an appropriate equivalent for 

the term filter and is sometimes used in connection with Kalman's work. 

Although the term, estimator will not be used in this thesis, filter outputs 

will generally be called estimates and errors such as that defined by 1.1 

will be called estimation errors. 

The somewhat sketchy background given by this introductory section is 

supplemented by the next two sections, after which the major part of the 

thesis will be presented. 
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II. A REVIEW OF DISTORTIONLESS FILTERING TECHNIQUES 

Distortionless filters have been used since the early 1950's in 

continuous-data situations; and more recently, some work has been done to 

extend the concept to discrete-data situations. But before any specific 

comments are made about the previous work in this area, it should be 

pointed out that the name distortionless filter is not often used. A term 

that has been used more frequently is "complementary" filter, and quite 

frequently no special name has been given to the filter at all. The sig

nificance of the names distortionless and complementary will be seen later. 

As for the situations where no special name has been used, one reason 

probably is that the filter was not designed specifically to satisfy a 

distortionless constraint, but instead just happened to be distortionless. 

An example of the use of a complementary (as they call it) filter is 

provided by References (l), (9), and (ll). All three papers were written 

in connection with an instrument landing system for aircraft which includes 

a rather specific filter. The filter combines three related signals such 

that under certain conditions the output would be a perfect estimate if 

the input noise were zero. 

In References (2), (?), and (6) distortionless filters appear in 

Sections k.6 and 4.7, Chapter 15, and Sections 3.4 and 4.2, respectively. 

Although neither Bendat (2) nor Darlington (6) call the resulting filter by 

any special name. Brown and Nilsson (5) mention both the names distortion

less and .complementary. In all three of these references, the situation 

that led to a distortionless filter involved estim .ting a signal (using 

Wiener filter theory) when two independent, noisy sources are available. 

The sources might, for example, be measurements of the same variable with 
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two different types of measuring devices or measurements of related 

variables, such as position and velocity. An interesting point that can "be 

seen from these references is that a distortionless filter may have one of 

two basic physical configurations, both of which yield the same estimate. 

In order to clarify this last statement, as well as some of the 

previous ones, an example from Benning (3) will be presented here. Con

sider a situation where there are two inputs available, say x(t) + n^(t) 

and x(t) + ngCt), where it is assumed that n^(t) and ngft) are independent 

of each other and are realizations of different random processes with 

known spectral density functions. The filter will be called distortionless 

if it satisfies either of the following equivalent constraints: l) the 

filter has a unity transfer function with respect to the signal, or 2) if 

the input noise happens to be zero, then the filter yields a perfect esti

mate of the si©ial. 

Figures 2 and 3 show the physical configurations that will be con

sidered. In Figure 2 the output may be written as follows (after the 

Laplace transform is taken of each time-domain function): 

X(s) = X(s)jY^(s) + N^(s)Y^(s) + NgfsjYgfs) (2.1) 

Applying the distortionless constraint here requires that X(s) = X(s) when 

N^(s) and N2(s) are zero. It can be seen from 2.1 that this constraint is 

satisfied for any value of the signal X(s) if the term in brackets is 

equal to one, in which case ¥2(3) can be written in terms of Y^(s) as 

follows : 

Ygfs) = 1 - Y^(s) (2.2) 

Thus when the distortionless constraint is applied, Equation 2.2 can be 

used to write the output in terms of only the transfer function Y^(s) as 
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r 1 
x(t) + n^(t) I 

\ { s )  

+ w 

p 
x(t) 

x(t) + ngft) 
1 

+ 7 

x(t) + ngft) 
1 

Ygfs) 
1 ' 

Ygfs) 

J 

Figure 2. A simple linear system for estimating x(t) directly 

r 

x(t) + n^(t) 1 

:< 
x(t) + ngXt) 1 

Ogft) - n^(t) 
Y(S)  

1 

1  

1  

Sgft) 1 
1  

r 

x(t) + n^(t) 1 

:< 
x(t) + ngXt) 1 

J > 
V  

Y (S )  
1 

1  

^ 1 x(t) 

' —1 — "" j y 

1 1 

L J 

Figure 3. A system equivalent to that shown in Figure 2 
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follows : 

X(s) = X(s) + N^(s)Y^(s) + ITg(s)|lL - Y^(s^ (2.3) 

It is at this point that the significance of the terms distortionless 

and complementary can best be seen. From 2.2 it might be said that the 

second transfer function, Y2(s), is the "complement" of Y^(s). If, for 

example, this type of distortionless filter is extended to the case of 

three inputs, each with additive noise, the result is that the sum of two 

of the transfer functions is complementary to the third transfer function 

(see Brown and Nilsson (5, p. 3^3)). On the other hand, it can be seen 

from 2.3 that for any Y^(s) this filter passes the signal X(s) without 

"distorting" it. Thus it is seen that there is some basis for the use of 

each name; nevertheless, the name distortionless will be used almost exclu

sively throughout the rest of this thesis. 

Next, consider the filter configuration shown in Figure 3. The 

following equation may be written for the output: 

X(s) = X(s) + Ngfs) - Ngfs) ' (2.1+) 

But it can also be seen from Figure 3 that Ngfs), the Laplace transform of 

the estimate of n^tt), may be written as 

NgCs) =  [^^(s) -  W^ (S ) ]Y(S )  • (2.5) 

This equation can then be used to rewrite 2 . h  to give 

X(s) = X(S) + H^(s)Y(s) + Ng(s)[l. - Y(s)^ (2.6) 

It can be seen that 2.6 is identical to 2.3 if Y(s) = Y^(s). Thus the 

dashed boxes in Figures 2 and 3 are identical distortionless filters if, in 

Figure 2, Y^(s) is replaced by Y(s) and 3^(5) is replaced by 1 - Y(s). 

A third equivalent filter can be obtained by switching the inputs in 

Figure 3, in which case the intermediate estimate is of n^(t) and Y(s) 
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corresponds to Ygfs) in Figure 2 rather than Y^(s). 

Finally, one answer will be given to the important question of what 

Y(S) to choose. If the optimization criterion is minimization of mean-

square error, then Y(s) is the Wiener filter which would estimate ng(t) 

from an input of n^ft) - n^(t). This seems quite reasonable for the con

figuration of Figure 3, and in Section 15-2 of Brown and Nilsson (5) the 

same conclusion is reached for the configuration of Figure 2. 

A significant feature of the example being considered here is that no 

assumptions are made about the characteristics of the signal. The point is 

that nothing needs to be assumed or known about the signal, since the 

choice of transfer functions depends entirely on the characteristics of the 

noise when the filter is forced to satisfy a distortionless constraint. 

The same idea may be stated in the other direction as follows: if very 

little is known about the signal characteristics (or if the filter is to be 

capable of handling a variety of signals), then in situations where two or 

more independent, noisy nources of the signal are available a good filter 

to use is one that satisfies a distortionless constraint. On the other 

hand, a distortionless filter is not the best choice in situations where, 

for example, the signal is "noise-like", with a known spectral density 

function. In that case it would be better to use a two-dimensiona]. Wiener 

filter (see Section 15-3 of Brown and Nilsson (5))> i.e., a configuration 

like that shown in Figure 2 but with no constraining relationship between 

Y^(s) and Y2(s). 

It might be mentioned here that using a distortionless filter is some

what analogous to using a minimax decision rule in a decision theory 

problem (see Sections 10-1 and 11-1 of Harman (7)). In decision theory. 
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using a Bayes decision rule is the "best" procedure when "enough" a priori 

information is available. However, if the a priori information turns out 

to be inaccurate, then i;ising a Bayes decision rule cein lead to very poor 

results. On the other hand, the minimax decision rule, although not as 

good as Bayes when accurate a priori information is available, is better 

than Bayes when the a priori information is poor. In other words, the 

minimax decision rule is used to avoid the possibility of extremely poor 

results, and in this sense it may be considered a "safe" procedure to 

follow. Similarly, a distortionless filter, with its ability to follow 

even the most abrupt changes in the signal, may be considered a "safe" 

filter to use. 

A brief review of Benning's thesis (3), which essentially suggested 

the topic being considered in this thesis, will be given to conclude this 

section. In terms of the example presented earlier, Benning's work might 

be described as an extension of both the distortionless filter configura

tions, shoim in Figures 2 and 3, to a multi-dimensional case. In particu

lar, the situation considered is one where there are n inputs available, 

each of which is a linear combination of m signals (where m is less than n) 

and each of which also contains an additive noise term. The work involves 

considerable use of Wiener filter theory; in fact, the extension of the 

second configuration (i.e., Figure 3) yields a filter with two major 

"blocks", of which the first is a "linear algebraic operator" and the 

second is a "generalized (n-m)-dimensional Wiener filter". Benning then 

reasoned that the filter just described could be used in discrete-data 

situations by singly replacing the Wiener filter by an ordinary Kalman 

filter, a change that in a real-life situation might involve replacing 



www.manaraa.com

11 

numerous electrical networks "by a digital computer. Unfortunately, 

extending the first configuration (i.e., Figure 2) to the multi-dimensional 

discrete-data case, which is essentially the purpose of this thesis, is not 

so straightforward. In fact, the approach taken in the derivations in 

Section IV in no way relies on Benning's analogous filter for the 

continuous-data case. 

This review of previous work in the area of distortionless filtering 

should be sufficient background for an understanding of the constraint 

applied in Section IV. 
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III. A REVIEW OF THE KALMM FILTER EQUATIONS 

The main purpose of this section is to obtain the usual Kalman filter 

equations in the same notation used throughout the rest of the thesis, as 

well as to present a derivation that can he modified to take into account 

a distortionless constraint. The notation used here is similar to that of 

Sorenson (lO), and the derivation is a combination of the one presented 

by Sorenson and the one presented in Brown's unpublished notes (4). 

The mathematical model that is used assumes that the state of the 

system can be described by the following linear, vector difference equa

tion: 

x(k) = $(k,k-l)x(k-l) + w(k-l) (3.1) 

where 

x(k) is the n-dimensional state vector of the system at time t^ 

0(k,k-l) is the n by n state transition matrix 

w(k-l) is an n-dimensional vector of state responses due to white-

noise driving functions that occur between t^ ̂  and t^. 

The vector random sequence w(k) is assumed to have zero mean, i.e.. 

w(k) = 0 for all k (3.2) 

Also, it is assumed to have a known covariance matrix as follows: 

Ejj^(k)w^(j^ = W(k) (3.3) 

where 6, . is the Kronecker delta and W(k) is a symmetric, n by n matrix 
KJ 

which is assumed to be nonnegative-definite. 

In general, the R.H.S. (right hand side) of 3.1 might include a 

control term and a deterministic driving function, but these terms are not 

important here and so will not be included. 
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In addition to 3.1, the mathematical model includes the following 

measurement (or output) equation: 

jr_(k) = H(k)x(k) + v(k) (3.4) 

where 

jr_(k) is the m-dimensional measurement vector at time tj^ 

H(k) is the m by n observation matrix 

v(k) is an m-dimensional vector of measurement noise. 

The random sequence v(k) also has zero mesii and a known covariance matrix 

as follows : 

E|^(k)J = 0 for all k (3.5) 

E^(k)v^(j^ = V(k)6^j (3.6) 

where V(k) is a symmetric, m by m matrix which is assumed to be non-

negative-definite. It is also assumed that v(k) is une or related with w(k). 

The object of the Kalman filter is to estimate x(k), the state vector 

at time t^, by making "optimum" use of the measurement %^(k) and the a 

priori estimate x'(k). The a priori estimate is really the optimum esti

mate of x(k), given measurement data through time t, ^ , and is defined as 
Df 

S'(k) = 0(k,k-l)&Xk-l) (3.7) 

This is a reasonable definition since, according to 3.2 and 3.3, w(k-1) has 

zero mean and is not correlated with w(k-2). The "optimum" estimate x(k) 

is defined to be that linear combination of 2£_(k) and $'(k) which minimizes 

the sum of the mean-square errors associated with estimating each of the 

state variables. The estimation equation may be written in either of the 

following two ways: 

x(k) = x'(k) + K(k)[^(k) - H(k)x'(k^ (3.8) 

or x(k) = jl - K(k)H(k^x'(k) + K(k)2r(k) (3.9) 
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where the n by m matrix K(k) is called the gain (or weighting) matrix. 

By analogy with 1.1 for a scalar situation, the estimation error is 

given here as 

e(k) = ^(k) - x(k) (3.10) 

Similarly, the error in the a priori estimate is defined as 

e'(k) = x'(k) - x(k) (3.11) 

The c ovarian ce matrices associated with e_(k) and e_'(k) are, respectively, 

P(k) = E[£(k)e^(k^ (3.12) 

P'(k) = E|%'(k)e'^(k^ (3.13) 

both of which are symmetric, n by n matrices. A general element of P(k), 

denoted as p^j(k), is equal to E|e^(k)ej(k^ ; and a general element of 

P'(k), denoted as q^^(k), is equal to E^e^(k)e^(k^. 

In Section D.l of Sorenson (lO) it is shown that the Kalman filter 

gives an unbiased estimate of the state vector if the initial estimate 

x(0) is chosen to be equal to Ej^(0^ ; and so it will be assumed here that 

E|g(k)j = E[jc(k^ for all k (3.1k). 

From this equation and 3.10 it can be seen that the estimation error has 

zero mean, from which it follows that the variance of the i^^ element of 

^(k) is equal to the expected value of the square of e^(k); i.e., 

Var|e^(k)J = E[e?(k)J • (3.15) 

Thus, the trace (the sum of the elements along the major diagonal) of P(k) 

may be written as 

Tr P(k) = Z Efef(k)l (3.16) 
i=l 

According to the definition of "optimum" given prior to 3.8, Tr P(k) may be 

considered to be a loss function which is to be minimized by the appropri

ate choice of gain matrix K(k); and so an equation is needed that relates 
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P(k) and K(k). First, 3.10 may be written as follows, by using x(k) from 

3.9 with jr(k) replaced by 3.4: 

e(k) = [l - K(k)H(k^e'(k) + K(k)v(k) (3.17) 

This can then be multiplied by its transpose and the expectation taken to 

yield P(k). Some terms in the resulting equation are zero from previous 

assumptions, and so the desired equation relating P(k) and K(k) is 

P(k) = [l - K(k)H(ki]p'(k)[Ï - K(k)H(k^ + K(k)V(k)K^(k) (3.18) 

The method used here for determining the optimum gain matrix is to take the 

partial derivative of the trace of P(k) with respect to K(k) and then to 

set the result equal to zero as follows: 

Skf^ = -sjl - K(k)H(k^ P'(k)H^(k) + 2K(k)V(k) = 0 (3.19) 

Rather than explain the differentiation rules that are used here, it will 

simply be mentioned that the appropriate identities are listed in Brown's 

notes (k). It should also be noted that Sorenson (lO) derives the same 

equation for K(k) without doing any differentiation. 

Solving 3.19 for the optimum gain matrix yields 

K(k) = P'(k)H^(k)[H(k)P'(k)H^(k) + V(k^ (3.20) 

where it, has obviously been assumed that the matrix in brackets is non-

singular. This equation for K(k) can be used in 3.18 to give the following 

equation for the covariance matrix: 

P(k) = P'(k) - K(k)[H(k)P'(k)H^(k) + V(k^K^(k) (3.21) 

Note that this equation holds only for the optimum K(k), whereas 3.18 

holds for any gain matrix. 

Both of the last two equations involve P'(k), the error-covariance 

matrix for the a priori estimate; and so it is necessary to derive an 

equation for it in terms of known quantities. First a new equation for 
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^'(k) may be obtained by using 3.1 and 3.7 in 3.11 to give 

e_'(k) = $(k,k-l)e(k-l) - w(k-l) (3.22) 

This equation can then be used in the definition of P'(k) given by 3.13. 

By using some of the prior definitions and assumptions, one can obtain the 

following result: 

P'(k) = $(k,k-l)P(k-l)$^(k,k-l) + W(k-l) (3.23) 

This completes the derivation of the Kalman filter equations; and so 

to summarize, a few comments will be made about the order in which the 

equations are used. If measurements have been taken through time t^_^, the 

estimate x(k-l) has been made, and P(k-l) has been computed, then the next 

computations can be done in the following order: 

1) use 3.7 to obtain the a priori estimate (k) and use 3.23 to 

compute the associated error-covariance matrix P'(k); 

2) confute the optimum gain matrix K(k) by using 3.20 with the P'(k) 

determined in l); 

3) obtain the new estimate x(k) by using either 3.8 or 3.9 with the 

K(k) determined in 2) and the current measurement ^(k); 

1|-) compute the error-covariance matrix P(k) associated with this 

estimate by using 3.21 with the P'(k) determined in l) and the 

K(k) determined in 2). 

The cycle then begins over with x(k) being used in 3.7 to give the a 

priori estimate of the state vector at time and P(k) being used in 

3.23 to yield P'(k+l), and so forth. 

The concepts of distortionless filtering and recursive (or Kalman) 

filtering have now been reviewed without any specific connection between 

the two. The next section will show how a distortionless constraint can be 

applied in a Kalman-type situation. 
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IV. DERIVATION OF EQUATIONS FOR DISTORTIONLESS RECURSIVE FILTERS 

A. General Case 

In terms of the ideas introduced in the first three sections, the 

object in this section is to apply a distortionless constraint (analogous 

to the second one listed early in Section II) to a Kalman filtering situa

tion. The results here are an extension of the basic configuration shown 

in Figure 2, in the sense that the estimate is direct rather than being the 

result of subtracting out an intermediate estimate of the noise. A rather 

general situation is considered first and then various special cases are 

considered. However, before the derivations are presented, two general 

comments are in order. 

First, in order to simplify the notation, the time at which a variable 

is evaluated will usually be given only when a time other than t^ is con

sidered. Thus, whenever an eq.uation from Section III is used here, the k's 

will usually be omitted. 

Second, many of the equations that follow involve partitioned vectors 

and matrices, an introduction to which may bé found in Hohn (8, p. 33). 

Essentially, the submatrices that result from partitioning may be treated 

exactly as elements of matrices as long as the dimensions are compatible 

for the operations being performed. One requirement that deserves special 

mention is that in a product of two matrices, say AB, the columns of A must 

be partitioned in exactly the same way as the rows of B. 

The situation to be considered here might be termed a modified Kalman 

model. The first modification is that each of the state variables is des

ignated as either a "signal" variable or as a "noise" variable. In par

ticular, it is assumed that there are r "signal" variables and that these 
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variables are the first r elements of the state vector x« Hence, the state 

vector may be partitioned as follows: 

where 3Cg is the r-dimensional "signal" vector and 3^ is the (n-r)-dimen

sional "noise" vector. The designation given a particular variable may be 

somewhat arbitrary, as long as the restrictions that are given later in 

this section are satisfied. On the other hand, in some situations the 

choice of "signal" and "noise" vectors is obvious. For example, if the 

measurement noise is not a white noise sequence but instead is correlated 

between sampling times, then it is frequently possible to consider the 

measurement noise to be the output of a "shaping filter". A shaping 

filter operates on a white noise input in such a way that the output has a 

given covariance matrix (see Sections F.l and F.2 of Sorenson (10) for 

further discussion of shaping filters). In this case, the measurement 

noise is used to augment the original state vector, and v is zero in the 

measurement equation. The original state vector is then a natural choice 

as the "signal" vector, with the measurement noise as the "noise" vector. 

This noise-free measurement model is one of the special cases considered 

later, but for now v is assumed to be nonzero. 

In order to lead up to the second basic assumption, recall from 3.1 

that the state vector is given by 

% 

% 
(4.1) 
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x(k) = $(k,k-l)x(k-l) + w(k-l) (4.2) 

which will be written here as simply 

X = Ox(k-l) + w(k-l) (4.3) 

Now the transition matrix $ can be partitioned, into four submatrices as 

follows : 

$ ts 

(t> 
11 

^rl 

''r+l.l • 

*^nl 

Ir 

' rr 

<t> 
r+l,r 

•^nr 

<l> 
l,r+l 

... ^ 
1X1 

r ,r+l ' rn 

r+l,r+l •" 
<!> 
r+l,n 

n,r+l t^nn 

Df < 
y (4.4) 

In addition, the first r rows of $ will be denoted as and the last n-r 

rows as ; or in terms of the submatrices defined in 4.4, 

0. 

= I 

= k i 

(4.5) 

(4.6) 

Also, w may be partitioned into Wg and in a manner similar to the parti

tioning of X in 4.1; and so 4.3 can be rewritten in the following parti

tioned form; 

x_ w_(k-l) 
(4.7) 

This can be written as two equations, one of which is written as follows 

when 4.5 and the partitioned form, of x(k-l) are used: 

-lË jl 
j^(k-l) + 

Wg(k-l) 

% 

1 

i^(k-l) 
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ÏS = 
Xg(k-ir 

%Tk:i7 
+ Wg(k-l) 

= $gXg(k-l) + 0^(k-l) + Wg(k-l) (4.8) 

Similarly, k.6 can "be used, in the other equation that can be written from 

4.7 to give 

% = $i^Xg(k-l) + + i%(k-l) (4.9) 

The assumption is now made that 

= 0 for all k (4.10) 

It can be seen from 4.9 that this assumption means that the value of the 

"noise" vector at time t^ is not to depend on the value of the "signal" 

vector at time t^ Although this restriction may at times prevent a 

desired defining of "signal" and "noise" variables, it will be seen later 

that 4.10 must hold if the distortionless constraint used here is to be 

satisfied. 

With the restrictions that have been placed on the situation, the 

distortionless constraint to be applied here can be defined by direct 

analogy with the second alternative given in Section II. The constraint 

may be stated as follows: if both the "noise" vector and the measurement 

noise happen to be zero for all k, then the filter must yield a perfect 

estimate of the "signal" vector; i.e., the following equality must hold: 

% = % (^-11) 

if both 3^ and v happen to be zero for all k. 

It will be seen later that this constraint can be satisfied by requir

ing that the estimate of the state vector be independent of the a priori 

estimate of the "signal" vector, i.e., that x be independent of.^. The 

procedure now is to use partitioning to obtain an equation for x which 
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is in appropriate form for applying the condition just stated. 

First, in order to use the partitioned form of x in the measurement 

equation, it is necessary to partition H as follows: 

H = 

h 
11 Ir 

h 
ml 

h 
mr 

h 
l,r+l 

h 
In 

Df 

[«s i % (4.12) 

m,r+l mn_ 

Using this equation and 4.1 in 3.4 yields the following form for the meas

urement equation: 

JL = 
& i % 

+  V 

= HgXg + + V 

th 

(4.13) 

It is also necessary to partition an, n"" order identity matrix so that 

it and the partitioned form of H can be used in the estimation equation. 

The notation of simply I and 0 will he used for identity and zero matrices, 

respectively3 when the dimensions are obvious or unimportant. However, it 

will sometimes be desirable to denote an i^^^ order identity matrix as 

and an i by j zero matrix as Tlius, may be partitioned as 

follows : 

.(n) _ 
.(r) ,(r,n-r) 
I'"' I 0 

•Jn:r>7 ! ;(5-î)- -

Df 

[̂ s 1 (4.14) 
QS" I 

The estimation equation given by 3.9 can be rewritten here as 

& = X' + % (4.15) 

Using 4.12,,and 4.l4, one can partition the factor in brackets as follows: 

= ts i ^J - i «J 

1 *̂ 3 
(4.16) 
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The a priori estimate x' can, of course, be partitioned the same way that 

X is in 4.1; and so using U.l6 and a partitioned x' in 4.15 yields the 

following equation: 

i = [is - + [i» - + % ('••17) 

According to the statement below Equation 4.11, the distortionless 

constraint is satisfied if x is independent of It can be seen from 

4.17 that this condition is satisfied if 

- KH^ = 0 (4.18) 

and so this will be called the constraint equation. Using 4.l8 in 4.17 

yields the following equation for the estimate of the state vector made by 

the distortionless filter: 

* 
where K is the gain matrix that minimizes Tr P while at the same time 

satisfying 4.l8, the constraint equation. But before obtaining an equation 

* 1 
for K , it will be shown that 4.19 yields a distortionless estimate of the 

"signal" vector for any gain matrix K that satisfies 4.18. First, K can be 

partitioned between rows r and r+1 and written as follows: 

K = 
S 

(4.20) 

Using this and the definition of Ig given by 4.l4, one may write the fol

lowing two equations from the constraint equation: 

.(r) % = ^ 

% = 0 (n-r,r) 

(4.21) 

(4.22) 

Using 4.20 and the definition of given by 4.l4, one can rewrite 4.19 as 
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\ % + '5 
A 

: -
% 

>-
(k.23) 

From this equation the estimate of the "signal" vector can he written as 

follows, by using 4.13 for jr: 

% ~ ^ (4.24) 

This can be rearranged and the factor that multiplies can be simplified 

by using 4.21 so that the following equation results: 

% " ̂  ~ ^ * ^S- (^-25) 

The other equation that can be written from 4.23 is the following 

(again using 4.13 for : 

(4.26) 

In this equation, the factor multiplying Xg is zero (according to 4.22) 

and so 4.26 can be rewritten as follows: 

tCI IÏ " 
Wow recall from 3.7 that the a priori estimate is given by 

(4.27) 

x' = Ox(k-l) (4.28) 

Then by uaing the partitioned iOiTii of 0 given by 4.4, one can, write the 

following equation for ̂  by direct analogy with 4.9: 

% = 3^Xg(k-l) + %(k-l) (4.29) 

At this point the significance of the assumption that is zero (see 4.10) 

can be seen. First, 4.29 simplifies to give 

^ (k-SO) 

If 3^ and V both happen to be zero for all k, then 4.27 becomes 
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% = (k-31) 

Using U.31 evaluated at time t^ ̂  in 4.30 yields the following equation: 

^ (4.32) 

from which it can be seen that ̂  is zero for all k if it is zero for time 

tg (for 2^ and v being zero for all k). Fortunately, it is reasonable for 

^(0) to be zero, since the state variables can usually be defined such 

that the initial state has zero mean. Thus, if 3^ and v are zero for all 

k, then ̂  is also zero for all k. It can be seen from 4.25 that in this 

situation the estimate of the "signal" vector is perfect, and it can also 

be seen from 4.27 that the noise is correctly estimated to be zero. Thus 

the requirement that & be independent of ̂  is sufficient to cause the 

filter to yield a distortionless estimate of Xg (if is zero), and so the 

gain matrix will be required to satisfy the constraint equation given by 

4.18. 

* 
The next step is to determine the K which minimizes Tr P while at the 

same time satisfying the constraint equation. In similar scalar situations, 

the usual procedure is to use the Lagrange multiplier technique; and so an 

extension of that technique will be used here. First, it should be noted 

that the constraint equation could be written as nr scalar equations or as 

r column-vector equations. In particular, if superscripts are used to 

denote the columns of Ig and Hg, then 4,l8 implies that 

Igi - KHgi = 0 for i = l,...,r (4.33) 

Now let ̂  be an arbitrary, n-dimensional column vector (for i = 1, 

...,r) and define 6 as follows ; 

e = Tr P +J^ (k.34) 
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Note that 0 is a scalar which includes the necessary nr Lagrange multi

pliers. The next step is to take the partial derivative of 0 with respect 

to K as follows : 

li - sir P ; (Lx Ty i 
3K 3K 3K KKg 

1=1 

(k.35) 

The first term here is given by 3.19 and the general term in the summation 

. Or since the transpose of the i^^ column of Hg is 

th T / T\ 1 
eq.ual to the i row of Hg , denoted as Hg J , 4.35 may be written as 

II = - K^P'H^ + 2KV - Z (4.36) 

How if an n by r matrix A is defined such that its i^^ column is 2^ , then 

T 
the product of AHg may be written as follows; 

AH, (4.37) 

It is clear that the right side of 4.37 can be written as a summation that 

is identical to the summation in 4.36, and so 4.36 can be written as 

I I  =  - 2 -  î ^ P ' H ^  +  2 K V  -  A H g ^  (4.38) 

Setting this partial derivative equal to zero and rearranging the 

result yields the following equation: 

(4.39) 

1 is assumed to be 

K*^HP'H^ + vj = P'H^ + 

If, as in the usual Kalman' filter derivation , Ip'H^ + ^ii 
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. of rank m and hence invertible, then both sides of 4.39 can be post-

multiplied by this inverse to give 

K* = [p'H^ + + vj (4.40) 

In order to eliminate the Lagrange multipliers from 4.40, it is necessary 

to use the constraint equation, which may be rewritten as 

K*Hg = Ig (4.4l) 

Thus, both sides of 4.40 can be postjnultiplied by Hg and the result can be 

set equal to Ig according to 4.4l. This latter equation can be rearranged 

into the following form: 

+ v] Hg = I_ - + v) H- (4.42) 

r T/ T 
It will now be assumed that Hg IhP'H + Vj Hg is of rank r and 

hence invertible. This assumption requires that Hq be of rank r and that 

/ T \-l ^ 
m, the order oftHP'H + V) , be greater than or equal to r (see Hohn (8, 

p. 103)). In other words, at each time t^ there must be at least as many 

measurements (elements of jr) as there are "signal" variables; and, in addi

tion, the measurements must include r linearly independent combinations of 

the "signal" variables. With this assumption, both sides of 4.42 may be 

postiiiultlplieu. by the e.ppropriate inverse to give an expression for -sA., an 

expression which can then be substituted into 4.40 to give the following 

equation for the gain matrix of the distortionless filter: 

H I I H 4. \T\ K* = < P'H^ + |lg - P'H^^HP'H^ + vj H^ j^Hg^l^HP'H^ + 

^HP'H^ + vj (4.43) 

This can be written in various other ways, one of which requires 

partitioning P '  in the same w a y  that 4» i s  i n  4 . 4  and using that f o r m  o f  P ' ,  
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the partitioned form of H , and the definition of I . The result can 

(after several steps that are omitted here) be written as the following 

two equations : 

* T / T 
:g = + HP'H" + V) <I - HR vl'V 

m / m \ ~1| 
HG (HP'H + V 

(4.44) 

[ (4.45) 

Another equation for K can be obtained by solving the original two 

equations in a different way. First, setting the partial derivative given 

by 4.38 equal to zero yields the following equation: 

-2 + 2K*V - = 0 (4 .46)  

If and Pg are defined to be submatrices of P' analogous to the 

submatrices of $ defined by 4.5 and 4.6, respectively, then the partitioned 

form of 

of 4.46 as 

-2 

- K*^ suggested by 4.l6 can be used to write the first term 

4.46 as ^ 

- K^HIP'H^ = -2< I - K*H^P' 
L _J ku J- ^ & 

p^> r (4.47) 
_3 ' " "sj^l 

p- « —1 ^ 
|lg - K Hgj is constrained to be zero, 4.47 can be simplified and But since 

then used to rewrite 4.46 as 

-ajljj - K*H^P^H^ + 2K*V - AHg^ = 0 

which can be rearranged into the followiu-g form: 

* 
K + + HAHg^ 

(4.48) 

(4 .49)  

This equation and the constraint equation can now be solved for K by 
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the same procedure used in solving 1|.39 and 4.kl for K . The only different 

y •H'' + ̂  be invertible. Al-assumption that is necessary here is that 

though the result obtained is not identical to 4.^3, it is of the following 

similar form:. 

— 

(4.50) 

This equation can be written as two equations in a manner similar to 

(V: 
-1 

that which led to k.44 sind 4.45. First, Pg can be partitioned in the same 

way that is in 4.6. This form of Pg, the partitioned form of H, and 

the definitions of and Ig can then be used in 4.50 to yield the follow

ing two equations : 
-1 

(4.51) 

—X —I 
+ vl H, 

,T 

-1 

(4.52) 

* 

(4.53) 

V2« + 

* 
It can be seen that this equation for can be written in terms of Kg as 

follows : 

* t/ T \'^r *1 
%% = 2%%% + V) - BsKs_ 

Even though there is little resemblance between 4.51 and 4.44, the two 

equations should yield identical results, as should 4.53 and 4.45. It 

seems clear that the computation time involved will generally be shorter 

if 4.51 and 4.53 are used. In fact, the main reason for presenting 4.44 

and 4.45 is that they are easily modified to fit the first special case 

considered in part B. 

The error-covajriance matrix P associated with the distortionless 
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estimate can be obtained from 3.18, since it holds for any gain matrix. 

However, the constraint equation can be used to simplify 3.18. If P' is 

partitioned in the same way that $ is in 4.4, then that form of P' and the 

partitioned form of |l - given by 4.l6 can be used to write 3.18 as 

f - "X \ Js I ^3. 

I 
Ig - K %8 

N 

But since the constraint equation requires that 

becomes 

- -\) ' 
& -

* * 
+ K VK (4.54) 

be zero, 4.54 

+ K VK (4.55) 

If 4.43 or 4.44 and 4.45 are used for computing the gain matrix, then 

the covariance matrix P' associated with the error in the a priori estimate 

is given by 3.23, which is rewritten here as 

P' = $P(k-l)$^ + W(k-l) (4.56) 

However, if the gain matrix is computed from 4.50 or 4.51 and 4.53, then 

only the last n-r rows of P' (i.e., P^) are needed. If W(k-l) is also 

partitioned such that its last n-r rows are denoted as Wg(k-l), then the 

following equation for P^ can be written from 4.56; 

= &2p(k-l)0^ + Wg(k-l) (4.57) 

This equation will be left as is, even though more partitioning and expand

ing could be done (and some simplification does occur because is zero). 

This completes the derivation of equations for a distortionless recur

sive filter to correspond with the usual Kalman filter equations. It might 

be mentioned that the computations for the distortionless filter are done 

in the same order that was suggested at the end of Section III for the 

Kalman filter. 
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Before special cases are considered, an "intuitive" method for imple

menting the distortionless filter will he explained. It was noted in 

Section III that the elements along the major diagonal of P are the vari

ances of the estimation errors. Similarly, the elements along the major 

diagonal of P' are the variances of the errors in the a priori estimates. 

It seems reasonable that if one of these elements, say is very large, 

then the a priori estimate xj of the corresponding state variable should 

receive very little weight in determining the new estimate x. Looking at 

the situation in the other direction suggests that î could be made inde

pendent of by replacing by some large value in the usual Kalman 

equation for the gain matrix. Thus if > • • • ^.re replaced by some 

large value in the usual gai& matrix equation, then the resulting estimate 

of X should be independent of &^,...,x^ (i.e., ̂ ); and so the resulting 

filter should yield the same results as those obtained by using 4.43 or 

* 
4.50 for K . 

The only justification for this method is that it does seem to be 

intuitively satisfying and that it checks with the previously obtained 

* 
equations for K in the particular cases that have been tried. The second 

example in Section V is worked by both methods to illustrate their equiva

lence in the situation presented there. 

B. Special Cases 

Special cases will now be considered, beginning with the noise-free 

measurement model; i.e., the situation where v_(k) is known to be zero for 

all k. Hence, V(k) is also zero for all k. The distortionless constraint 

can then be stated as follows: if the "noise" vector happens to be zero 
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for all k, then the filter must yield a perfect estimate of the "signal" 

vector. The procedure here is like that used in the general case, and so 

only the differences will be mentioned. First, the expanded form of the 

measurement equation given by 4.13 simplifies to 

Z. = HgXg + (4.58) 

The constraint equation and estimation equation given by 4.l8 and 

4.19, respectively, are the same here except that the jr_ in 4.19 is given 

by 4.58 rather than 4.13. Thus the equation (corresponding to 4.25) for 

the estimate of the "signal" vector becomes 

^ = 25g + (^^'59) 

The covariance matrix P is given by 3.18 without the second term, and 

so the modification of equations such as 4.36 and 4.38 that is necessary 

here is to simply drop the terms that have V as a factor. Thus 4.39 

becomes 

K*HP'H^ = P'H^ + (4.60) 

T 
It is now assumed that HP'H is of rank m and hence invertible. This 

assumption requires that H be of rank m, that P' be of rank at least as 

great as m, and hence that m be less than or equal to n. Then both sides 

of 4.60 can be multiplied by the appropriate inverse to give 

[hp'H^V^ (4.61) 
* 
K = P'H^ + 

This equation and the constraint equation (which is unchanged here) 

* 
can be solved for K by direct analogy with the derivation for the more 

general situation. The same requirements that arise following 4.42 must 

also be met here. The gain matrix for this first special case is given by 

the following equation, which is 4.43 with V replaced by zero: 
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* 
K = < P'H'^ + jig - ~^Hg^ ^HP'H^^"^ 

(4.62) 

Tliis can be partitioned and written as two equations which are the same as 

and I1.U5 with V replaced by zero. Essentially, the equations for the 

general case are modified by setting v and V equal to zero when the model 

indicates no measurement noise. 

The next special case conr iered is that of r=n; in other words, the 

situation where all the state variables are designated as "signal" varia

bles. The covariance matrix V is assumed to be nonzero; and the distor

tionless constraint is that if v happens to be zero, then a perfect esti

mate of the state vector x must be obtained. 

It can be seen from k.l5 that the equation that corresponds to the 

previous constraint equation (given by 4.l8) is 

I - K*H = 0 (4.63) 

When this constraint is satisfied, k.l5 simplifies to give the following 

estimation equation: 

X = K^. (4.6k) 

where x could also be denoted as Xg- Again the derivation is like that 

used in the general situation, and only the changes will be pointed out. 

m ip 
In 4.39 and k.hO, the Hg is replaced by H . Instead of postmultiplying 

It. 1+0 by H J it is postmultiplied by H; and the result is set equal to I 

according to 4.63. Hence the equation that corresponds to 4.42 is 

+ vj"^H = I - + vj"^H (4.65) 

It will now be assumed that the matrix product that multiplies in 

4.65 is of rank n (which equals r). This assumption requires that m be 

greater than or equal to n and that H be of rank n. In other words. 
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the measurement vector must include n linearly independent cor - ... .tions of 

the state variables. Postmultiplying both sides of 4.65 by cne appropriate 

inverse yields 

hk = H^(EP'H^ + ̂  - P' (4.66) 

* 
Using this expression in the equation for K that corresponds to 4.40 

yields an equation that can be written in the following form: 

K* = (4.6?) 

Recall that the measurement equation is 

- Hx + V (4.68) 

In the special case where H is square and invertible, a distortionless 

* _1 * 
estimate of x can be obtained by letting K be H . Using this form of K 

and 4.68, one can rewrite 4.64 as 

Î = X K (4.69) 

Fortunately, when H is invertible, 4.67 reduces to K = H~^. Thus it might 

be said that, in this situation, 4.67 yields the "obvious" answer, a result 

that could also be obtained by using just the constraint equation. 

Finally, the expression for the error-covariance matrix simplifies to 

P = K VK (4.70) 

when the constraint equation given by 4.63 holds. 

It should be noted that the estimation equation (given by U.6U) for 

this r=n situation no longer has a recursive nature; i.e., each estimate 

depends only on the measurement taken at that time and does not depend on 

previous measurements in any way. 

The last special case considered involves a very simple change from 

the general case, namely, that r=m. This means that the number of "signal" 

variables is exactly equal to the dimension of the measurement vector and 
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that H is square. Also, corresponding to the assmption following 4.42, 

H will be assumed to "be invertit le. No new derivation is necessary here, 

but considerable simplification of 4.51 and 4.53 is possible. First, the 

following equation can be written (see Hohn (8, p. 95) ): 

Using 4.71 in 4.51 gives 

= Hg"^ (4.72) 

Using this result in 4.53 gives simply 

Kg = 0 (4.73) 

It can be seen from 4.25 and 4.27 that the estimates of Xg and in this 

case become 

2s = (4-Tk) 

% = % (k'75) 

Since the initial "noise" vector is estimated to be zero, it can be seen 

from 4.30 and 4.75 that ̂  and ̂  will be zero for all k. Thus 4.74 

becomes 

from which it is clear that the distortionless constraint is being satis

fied. 

The results of this section are summarized in Section VI, after first 

being illustrated by the two examples presented in Section V. 
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V. EXAMPLES 

Both examples considered here are discrete-data versions of the two-

input problem introduced in Section II. The object of the filter is to 

make a distortionless estimate of the signal, called s(k) here to distin

guish it from the state vector, using the two noisy measurements 

y^(k) = s(k) + n^(k) (5.1) 

y^Ck) = s(k) + ngfk) (5.2) 

For the first example, n^ and are assumed to be uncorrelated meas

urement noises with variances v^^ and Vgg, respectively, • The covariance 

matrix V can then be written as 

0 
V = 11 

22 

(5.3) 

The state vector has only one component, s(k), which will be denoted as x^ 

(where the time notation has been dropped), and so the measurement equation 

is 

L = 

1 n. 
1 +

 

H
 

1 
1 

"2_ 

(5.4) 

This example clearly corresponds to the second special case considered in 

part B of the last section, the dimensions being n=r=l and m=2. Hence, the 

covariance matrix associated with the a priori estimate has only one ele

ment and will be written as 

P' = 111 (5.5) 

The gain matrix can be computed by using 4.67, from which it can be 

seen that the inverse of the following matrix is required: 
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HP'Ĥ  + V = 
<^11 -

^11 

^11 

^11 ^22 

(5 .6)  

where H, of course, is the vector multiplying in 5.4. The inverse of 

the matrix may be written as follows: 

-1 1 
HP'H + V 

+ ̂ 22' * 

111 + ̂ 22 

-OL 11 

-'111 

'111 + ̂ 11 

(5.7) 

Premultiplying both sides here by H gives 

-1 1 

' 

"^11^^11 * ̂ 22) * ̂ 11^22 
[̂ 22 ""ll) 

(5 .8)  

Postmultiplying both sides of this by H yields a scalar whose inverse is 

1-1 
+ V)H 

•^11^^11 + ̂ 22^ + W22 

\l * ̂ 22 

(5.9) 

It can be seen from 4.6? that K is then obtained by premultiplying 5.8 by 

5.9 to give 

* 
K = 

L + ^22 E22 ''J 

(5.10) 

•11 • -22 ' 

Using this gain matrix in the estimation equation given by 4.64 yields the 

following equation: 

(5.11) 

^11 ^22 
"2221 + Vliy2 

It might be noted here that the two measurements are weighted by com

plementary amounts. Also, it can be seen that the result obtained might 

have been reached by requiring the sum of the two weighting terms to be 

equal to one and then choosing the weighting such that the measurement with 

the greatest noise-variance is given proportionately the least weight. 

Using 5.4 in 5.11 gives the following equation: 
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^ + Vgg * V2) (5.12) 

This equation is quite similar to 2.3 for the analogous continuous-data 

situation. 

The error-covariance matrix associated with the estimate given above 

can be computed by using 4.70. Premultiplying and postmultiplying V by, 

* 
respectively, K and its transpose yields 

It is of some interest to compare the results obtained for a distor

tionless filter with those obtained using the usual Kalman equations. 

First, it can be seen from 3.20 that the K for this example is found by 

T 
premultiplying 5«7 by P'H . The result can be written as 

The error-covariance matrix can then be computed by using 3.21, which 

yields the following equation (after several intermediate steps): 

' ' -IX - 4"-" I-2^n 

A comparison of 5.l4 and 5.15 with 5.10 and 5.13 indicates that how 

much affect the distortionless constraint has in this example depends on 

the size of q̂  ̂relative to v̂ V̂p̂ . It can be seen that a relatively 

uncertain a priori estimate (i.e., large q̂ )̂ results in a gain matrix that 

* 
is essentially the same as K , as the intuitive method suggested. As would 

be expected, the error-covariance matrix which results by using the usual 

Kalman equations is better (i.e., smaller) than when a/constraint is . 

applied. 
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In the second example, n̂ (k) and n̂ Ck) are assumed to he Markov and 

are modeled as the output of a shaping filter. The situation thus in

volves noise-free measurements, each of which is the sum of two state 

variables. In particular, the three-dimensional state vector is defined as 

(5.16) 

In terms of these state variables, the measurement equation (written from 

5.1 and 5.2 without the time notation) is given by 

X (k) s(k) 
Df 

x(k) = XgCk) = n̂ (k) 

XgCk) ngCk) 

Z = 
*1 *2 

1 1 Ô 

x^ + x^ 1 0. 1 
X (5.17) 

This is an example of the first special case considered in part B of 

Section IV, with dimensions r=l, m=2, and n=3. Thus, m is less than n; and 

it can also be seen that H is of rank m. Finally, P' is assumed to be of 

rank at least 2 at each value of k. Thus, the requirements are satisfied 

so that 4.62 can be used to compute K . 

-(3) 
The necessary partitioning of H and I is given by the following two 

equations : 

H = 
1 0 

0 1 " l̂ s :  ̂
(5.18) 

.(3) ^ 

0 0 

1 0 

0 1 

f s I ^n] 
(5.19) 

The covariance matrix P' can be written as 
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^11 ^^12 *^13 

^12 ^2 ^23 

L'^IS ^23 ^33. 

(5.20) 

Some of the intermediate steps that lead to the final result will be 

noted. The first matrix product of interest is 

T 
HP'H = 

^11 •*" ^^12 *^22 

'^ll *^12 "^13 "^3 

^11 * ^12 ^^13 *^23 

*^11 * ^^13 %3 
(5.21) 

The inverse of this matrix can be postmultiplied by Hg to give 

HP'H .TTT 

*^13 *^33 " *^12 " ̂23 

*^12 * ̂ 22 - 9-13 - S23 

(5.22) 

where the indicated determinant is given by the following equation: 

HP'H = <L2_2_^22 %11%33 '^22*^33 * ̂ *^12*^13 ^^12*^33 ^^^13^22 

" *^12 " ̂13 " ̂23 " ̂*^11^23 " ̂*^12*^3 " ̂"^13^3 (5-23) 

T 
Premultiplying 5.22 by Hg yields a scalar with the following inverse: 

-1 
T 

HP'H 

^22 • ̂^23 *33 

(5.24) 

The first bracketed factor in 4.62 is given by 

Ig - P'H'jHP'H^j Hg 

%12%33 ^13*22 9g2%33 ~ ̂ ^12*23 " *13*^3 " '^23 
T 

HP'H 

This can be postmultiplied by 

the following expression: 

T ATT, I TTT 
EG- EP'E* EG 

—1 —I -1 

1 

-1 

-1 

(5.25) 

Hg (using 5.24) to give 
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'^12*^33 ^13^22 ^22^33 " ̂^12^3 " ̂13'^23 " ̂ 3 

^2 " 2^23 %3 

1 1 

-1 -1 

-1 -1 

( 5 . 2 6 )  

The factor in braces in 4.62 is then obtained by adding 5.26 to P'H^. The 

result will be denoted as follows : 

Df 

^22 " 2^23 ^33 

\l ^12 

^21 *22 
(5.27) 

^31 *32 

Finally, it can be seen from 4.62 that K is given by postmultiplying 5.27 

/ T\~^ 
by HP'H . Again the result is given a shortened notation; i.e., 

* 
K = 

0-22 - 2^23 ^33 HP'H 

b b „ 
11 12 

b b 
21 22 

b b 
_31 32_ 

( 5 . 2 8 )  

It turns out that each of the b^^'s here has 

* 
final form of the equation for K becomes 

T1 
HP'H as a factor, and the 

K 
1 

"̂ 33 " ̂ 3 2̂2. - 2̂3 

^22 " ̂ ^3 ^33 
q.22 - 2̂3 q.23 - ^22 

^3 ~ %3 ^33 ^23 

(5.29) 

This same example will now be worked by' the intuitive method. As the 

pre'vious section indicated, the result will check with 5.29. The first 

step is to compute the usual Kalman gain matrix. Since V is zero here, K 

is given by 3.20 with V omitted; and so the equation to be used is simply 

K = P'H^^HP'H^j (5.30) 

Although not previously written out, this expression could be computed as 

an intermediate step leading to 5-25- At any rate, using the particular 
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matrices of this example in 5.30 yields 

1 K = 

HP'H 

9^2^13 *^12*^33^ 

^^11^23 ~ ^13 " ̂13^23 

^^11^22 Ql2%13 9l2%33 \ 
+ 2q^2<l22 * 422^33 " *^11^23 

"*12 " 2Si2%23 " *13*^3 , 

-923^' 

f^ll'^3 ^^13 *13*^3 

^"'^11*33 " *12*13 ~ *12*33 ' 

f*ll*22 *12*13 *13*22\ 

\"*11*23 " *12 " *12*23 

/*11*23 *12 *12*23 

•*11*22 " *12*13 " *13*22/ 

/ *11*33 *12*13 ^*12*2 3^^ 

+*13*22 + *22*33 " *11*23 

"*12*23 " *13 ~ ̂ *13*23 

L 
23 

(5.31) 

An interesting, important point here is that the terms canccl cach 

* 
other in the computation of k;. This is Important because K is to be 

obtained by letting be very large in 5.31, and so the highest power of 

occurring in the elements of the matrix of 5.31 should be the same as 

the highest power of q^^ occurring in HP'H (given by 5.23). As q. 
11 

becomes large in 5.31, the terms containing no q^^ become negligible; and 

* 
then q^^ cancels out of the rest of the terms so that K is given by 
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K* = - 1 

^22 " ̂ ^3 %3 

which does check with 5•29. Presumably, computer implementation of the 

intuitive method could be accomplished in this example by replacing by, 

say, ten (or maybe one hundred) times the largest element in the original 

P' matrix. 

%3 ~ ̂ 3 

I22 " ̂ 3 • 

^^23 " ̂33 

0^2 " *123 

•^23 ~ ^22 

*^33 " ̂23 

(5.32) 



www.manaraa.com

43 

VI. SUMMARY 

The purpose of this thesis has been to extend the basic distortion

less filter configuration shown in Figure 2 to discrete-data situations, in 

particular, to situations to which the usual Kalman filter theory is appli

cable. As might have been expected, however, it has been necessary to 

place some restrictions on the Kalman-type situations to which a distor

tionless constraint may be applied. The restrictions, which, for emphasis, 

will be repeated here in the summary, mainly involve the transition matrix 

0, the relative dimensions of the measurement vector and the partitioned 

parts of the state vector, and the rank of the measurement matrix or 

partitioned parts of it. 

First, whenever there are both a "signal" vector and a "noise" vector, 

the $1^ part of the transition matrix must be zero (see 4.10). Because of 

this assumption, it is not permissible to designate a particular state 

variable as a "noise" variable if its value at time t^ depends on the value 

of a "signal" variable at a time prior to tj^. 

Another significant assumption was made following 4.42. That assump

tion requires to be of rank r and also requires the following inequality 

to hold: 

r m (6.1) 

In other words, there must be at least as many elements in the measurement 

vector as there are "signal" variables. 

Although various equations are given for the gain matrix in the gener

al case, the most useful equations are 4.51 and 4.53. These equations axe 

* 
sufficiently straightforward that computing K should not require an 

unreasonable amount of computer time. 
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In the special case where v is known to be zero, the additional 

req,uirements (see below 4.60) are that H be of rank m and that P' have 

rank at least m, which then requires the following inequality to hold: 

m £ n (6.2) 

This simply means that the dimension of jr must not be greater than the 

dimension of x, a condition which is nearly always satisfied when the 

* 
model calls for v to be zero. The equation for K in the noise-free meas

urement situation is given by k .62 .  

Now in the special case where all the state variables are considered 

to be "signal" variables (i.e., when r=n), the inequality that corresponds 

to 6.1 is 

n < m (6.3) 

This inequality is essentially the opposite of the one given by 6.2 and 

means that there must be at least as many elements in ̂  as there are state 

variables.. Although this situation is not a common Kalman-type situation, 

it is a natural carry-over from the distortionless filter idea presented 

in Section II, as can be seen from the first example in Section V. The 

gain matrix is given by k.Sj for this r=n case. 

Finally, in the last special case considered, the only thing that is 

different from the general case is that K„ is assumed to be square and 

invertible. This assumption leads to considerable simplification of the 

equations for the gain matrix, as can be seen from k.J2 and 4.73. 

It should generally be possible to obtain the distortionless filter 

gain matrix by using the intuitive approach explained in Section IV 

(shortly after 4.57) and illustrated in Section V. 

In conclusion, a distortionless constraint can be applied in various 
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situations, but certain requirements must be met in each case. The situa

tion in which a distortionless recursive filter is most apt to be useful 

is the noise-free measurement case, especially the case where the actual 

measurement noise is considered to be the output of a shaping filter. In 

this case, the original state vector is augmented by the measurement noise 

and V is zero. If the "new" state variables are designated as the "noise" 

variables, then is zero and the first major requirement is automatically 

satisfied. 
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